Cold water stress attenuates dopaminergic neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice.
نویسندگان
چکیده
In the present study, we tested the effect of cold water stress (CWS) on dopaminergic neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mouse model, and found that CWS pretreatment elicited less MPTP neurotoxicity. To understand the molecular mechanism underlying this phenomenon, we detected the expression of heat shock protein 70 (Hsp70) in the striatum of the experimental mice, and found that CWS pretreatment could significantly increase striatal Hsp70 in MPTP-treated mice. Furthermore, in parallel with the induction of Hsp70, the MPTP-induced increase of striatal α-synuclein was inhibited in the CWS + MPTP-treated mice. CWS pretreatment also significantly inhibited the reduction of anti-apoptotic molecule Bcl-2 expression in the striatum and enhanced Bcl-2 transcription in the substantia nigra of MPTP-treated mice. Taken together, these data indicated that Hsp70 might be an important intermediate for the neuroprotective effect of CWS against MPTP-induced dopaminergic toxicity.
منابع مشابه
Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons in the substantia nigra pars compacta (SNpc) as seen in Parkinson's disease. Here, we show that the pro-apoptotic protein Bax is highly expressed in the SNpc and that its ablation attenuates SNpc developmental neuronal apoptosis. In adult mice, there is an up-regulation of Bax in the SNpc after MPTP administration ...
متن کاملDietary curcumin supplementation attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in C57BL mice
Studies in vivo and in vitro suggest that curcumin is a neuroprotective agent. Experiments were conducted to determine whether dietary supplementation with curcumin has neuroprotective effects in a mouse model of Parkinson's disease (PD). Treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) significantly induced the loss of dopaminergic cells in the substantia nigra and deletion o...
متن کاملBlockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the nigrostriatal dopaminergic pathway as seen in Parkinson's disease (PD), a common neurodegenerative disorder with no effective protective treatment. Consistent with a role of glial cells in PD neurodegeneration, here we show that minocycline, an approved tetracycline derivative that inhibits microglial activation independently of it...
متن کاملMetabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys.
Degeneration of the dopaminergic nigrostriatal system and of noradrenergic neurons in the locus coeruleus are important pathological features of Parkinson's disease. There is an urgent need to develop therapies that slow down the progression of neurodegeneration in Parkinson's disease. In the present study, we tested whether the highly specific metabotropic glutamate receptor 5 antagonist, 3-[(...
متن کاملHydrogen in Drinking Water Reduces Dopaminergic Neuronal Loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Mouse Model of Parkinson's Disease
It has been shown that molecular hydrogen (H(2)) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H(2)-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 43 6 شماره
صفحات -
تاریخ انتشار 2011